VOCABULARY

biased decision
categorical variable
combination
conditional
probability
dependent events
equally likely
events
event
fair decision
independent events
joint frequencies
marginal
frequencies
a decision based on an event in which certain outcomes are favored or more likely than others
variables that take on values that are names or labels. The color of a ball, gender, or year in school (freshman, sophomore, junior, senior) are examples of categorical variables
a group of objects chosen from a larger set, in which the order or arrangement is not considered
in probability, two events in which the outcome of one event is dependent on the outcome of a second event
in probability, two events in which the outcome of one event is dependent on the outcome of a second event
events equally probable of happening; the probability that each of them will occur is $1 / n$
a subset of a sample space
a decision based on an event in which the outcomes are equally likely
if event A and event B have nonzero probabilities in a sample
space, and if and only if $P(A \cap B)=P(A) \cdot P(B)$, then events A and B are independent events.
entries in the body of a two-way frequency table
entries in the TOTAL row and TOTAL column of a two-way frequency table
mutually exclusive events
permutation
probability
sample space
sum of probabilities

The Multiplication
Principle
events that cannot occur at the same time
an arrangement of a group of objects chosen from a larger set in a definite or precise order
likelihood of occurring.

$$
P(A)=\frac{\text { number of successes }}{\text { total number of possibilities }}
$$

The formula for addition of probabilities is

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

If $P(A \cap B)=0$, then $P(A \cup B)=P(A)+P(B)$.
The formula for multiplication of probabilities is

$$
P(A) \cdot P(B)
$$

The formula for conditional probability is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

the set of all possible outcomes of a random experiment total of probabilities assigned to all the elements of a sample space; equals 1
if you are choosing one element from a set that has p elements, and one element from a set that has q elements, then the total number ways of doing this is $p \cdot q$. A similar principle works for three or more sets. If you then choose from a third set that has r elements, then the total number ways of doing this is $p \cdot q \cdot r$
two-way frequency table
a useful tool for examining relationships between categorical variables

